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Abstract

Point-of-Interest (POI) recommendation has been a trending
research topic as it generates personalized suggestions on fa-
cilities for users from a large number of candidate venues.
Since users’ check-in records can be viewed as a long se-
quence, methods based on recurrent neural networks (RNNs)
have recently shown promising applicability for this task.
However, existing RNN-based methods either neglect users’
long-term preferences or overlook the geographical relations
among recently visited POIs when modeling users’ short-
term preferences, thus making the recommendation results
unreliable. To address the above limitations, we propose a
novel method named Long- and Short-Term Preference Mod-
eling (LSTPM) for next-POI recommendation. In particular,
the proposed model consists of a nonlocal network for long-
term preference modeling and a geo-dilated RNN for short-
term preference learning. Extensive experiments on two real-
world datasets demonstrate that our model yields significant
improvements over the state-of-the-art methods.

1 Introduction

Location-based social networks (LBSNs) like Foursquare
and Yelp are becoming pervasive in our daily lives. Users
on LBSNs would like to share with friends their experi-
ences on points of interest (POIs), e.g., restaurants and mu-
seums. The huge number of accumulated user check-in data
proliferates researches on recommending POIs to unvisited
users. POI recommendation is of high value to both the users
and service providers, and has thus attracted much atten-
tion from researchers in the recent years (Yin et al. 2016;
Cheng et al. 2018; Zhao et al. 2019).

The task of next-POI recommendation (Feng et al. 2018)
is a natural extension to general POI recommendation. It
aims to provide personalized recommendations on POIs to
a user based on her/his historical check-in sequence. The
user’s long sequence can be further partitioned into mul-
tiple trajectories, where each trajectory contains a set of
check-ins occurring in a specific time window such as one
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day or one week. By partitioning the sequence into trajec-
tories, the next-POI recommenders facilitate the modeling
of users’ long- and short-term preferences. The short-term
preferences indicate that the next POI a user will visit is in-
fluenced by her/his recently visited venues in the current tra-
jectory. For example, a user may visit a bar right after hav-
ing dinner in a restaurant. The long-term preferences denote
a user’s general interests mined from her/his historical tra-
jectories. In summary, the long-term preferences are usually
stable, while the short-term preferences tend to change fre-
quently over time.

In next-POI recommendation, with the assumption that a
user’s next destination is highly correlated with her/his re-
cently visited POIs in the current trajectory, most existing
studies mainly focus on modeling the dynamics of short-
term user preferences. For example, Cheng et al. (2013)
apply a localized region constraint by factorizing person-
alized Markov Chain (FPMC) (Rendle, Freudenthaler, and
Schmidt-Thieme 2010), and Feng et al. (2015) consider the
personalized sequential information as well as model the
geographical influence by calculating the distance between
the destination POI and recently visited ones. More re-
cently, researchers adopt recurrent neural networks (RNNs)
and other variants like Gated Recurrent Unit (GRU) or
Long Short-Term Memory (LSTM) to characterize users’
dynamic short-term preferences, such as ST-RNN (Liu et al.
2016), TMCA (Li, Shen, and Zhu 2018) and CARA (Man-
otumruksa, Macdonald, and Ounis 2018).

In addition to the short-term preference dynamics re-
flected by the recent check-in behaviors, human mobility
exhibits long-term periodical regularities. For instance, in
a student’s daily routine, she/he may go to a school cafe-
teria at lunch time in workdays. Unfortunately, in next-POI
recommendation, only a few studies have taken both long-
and short-term preferences into account. A successful ex-
ample is the DRCF (Manotumruksa, Macdonald, and Ou-
nis. 2017) which captures users’ general long-term prefer-
ences with Collaborative Filtering (CF). DeepMove (Feng
et al. 2018) exploits a deep neural network with two at-
tention mechanisms to model the long-term periodicity. For
short-term preference modeling, RNN-based approaches are
adopted by both DRCF and DeepMove. As a recent attempt,
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STGN (Zhao et al. 2019) presents a gated mechanism to
model both long- and short-term interests, which is also un-
der the LSTM architecture.

Though RNNs have shown inspiring results in character-
izing the sequential dependency, they have an inherent lim-
itation as they can only model consecutive activities in the
user’s check-in sequence. For example, given a user’s POI
check-in sequence {l1, l2, l3, l4, l5}, suppose l1 is the user’s
work place, l2 is her/his home, l3 and l4 are respectively a
restaurant and a cinema, and l5 is a petrol station on her/his
way home. Then, RNNs will model the sequence strictly
in accordance with the temporal order (Sun et al. 2019).
However, in this case, the user’s movement from l4 to l5
is mainly determined by the short geographical distance be-
tween l5 and l2, rather than the semantic relationship be-
tween l4 and l5. In specific, the geographical connections
between non-consecutive POIs are a key factor in decid-
ing users’ next movements, and such property can hardly be
captured via existing RNN-based approaches. Moreover, de-
spite the importance of POIs’ mutual geographical relations
to the discovery of long- and short-term user interests, the
aforementioned methods (Manotumruksa, Macdonald, and
Ounis. 2017; Feng et al. 2018) fail to incorporate the im-
portant spatial contexts when learning the long-term prefer-
ences.

To this end, we propose a novel Long- and Short-Term
Preference Modeling (LSTPM) framework to address the
above problems in next-POI recommendation. The main
building blocks of LSTPM are inspired by the recent ad-
vances of nonlocal operations (Wang et al. 2018) and dilated
RNNs (Chang et al. 2017). To thoroughly model users’ long-
term preferences, we develop a context-aware nonlocal net-
work structure to explore the temporal and spatial correla-
tions between historical and current trajectories. To conquer
the limitation of RNNs in short-term user preference model-
ing, we propose a geo-dilated RNN to fully exploit the ge-
ographical relations among non-consecutive POIs. Further-
more, extensive experiments on real-world datasets demon-
strate that our model achieves significant improvements over
the state-of-the-art methods.

2 Related Work
Early studies in POI recommendation focus mainly on es-
timating users’ preferences using Collaborative Filtering
(CF), especially Matrix Factorization (MF) based tech-
niques (Ye et al. 2011; Cheng et al. 2012; Lian et al. 2014;
Gao et al. 2015). These methods can only model users’
static preferences. For example, when a user living in New
York travels to Hawaii for a holiday, these types of recom-
menders may still recommend POIs located in New York
since they are unable to capture the dynamics of user pref-
erences. More recently, deep learning based methods, such
as embedding learning (Feng et al. 2015; Shi et al. 2018;
Zhang et al. 2019), neural CF (He et al. 2017; Yin et al.
2017), deep latent factor model (Cheng et al. 2018), and met-
ric learning (Tay, Anh Tuan, and Hui 2018) models, achieve
promising performance in many recommendation systems.

Researches on next-POI recommendation pay more atten-
tion to users’ dynamic preference modeling. The pioneering

work by Cheng et al. (Cheng et al. 2013) proposes a ma-
trix factorization method to embed the personalized Markov
chains and the localized regions. Inspired by the success
of RNN in sequential data modeling (Hidasi et al. 2015;
Chen et al. 2019a; 2018; Huang et al. 2018), RNN based
methods become pervasive in the field of next-POI recom-
mendation (Liu et al. 2016; Manotumruksa, Macdonald, and
Ounis. 2017; Feng et al. 2018; Li, Shen, and Zhu 2018).
For example, ST-RNN model (Liu et al. 2016) extends RNN
to model local temporal and spatial contexts. CARA (Man-
otumruksa, Macdonald, and Ounis 2018) captures users’ dy-
namic preferences by exploiting GRU’s gate mechanism.
TMCA (Li, Shen, and Zhu 2018) and STGN (Zhao et al.
2019) adopts the LSTM-based and gated LSTM frame-
work to learn spatial-temporal contexts, respectively. Deep-
Move (Feng et al. 2018) designs a multi-modal RNN to cap-
ture the sequential transition.

Overall, all the RNN/LSTM based approaches for mod-
eling the short-term preferences suffer from the drawback
of being unable to model the relations between two non-
consecutive POIs. Moreover, only a few methods are pre-
sented for modeling the long-term preferences. In contrast,
our proposed model considers both the long- and short-term
preferences, with a geo-dilated RNN to capture geographical
influence from non-consecutive POIs and a context-aware
non-local structure to identify spatiotemporally relevant tra-
jectories from the history.

3 Problem Formulation

Let U =
{
u1, u2, ..., u|U |

}
denote a set of LBSN users, and

L =
{
l1, l2, ..., l|L|

}
be a set of POIs, where each POI is

geocoded by a (longitude, latitude) tuple, i.e., (lonl, latl).
For each user u ∈ U , we can obtain a trajectory sequence
represented by S = {S1, S2, ..., Sn}, where n is the index
of the current trajectory. Each trajectory Sm ∈ S consists
of a sequence of POIs visited by the user u in a consecutive
order, i.e., Sm =

{
l1, l2, ..., l|Sm|

}
and l ∈ L.

Given the trajectory sequence S, the next-POI recom-
mendation problem is defined as follows. For a target user
u ∈ U , along with the user’s historical trajectory se-
quence {S1, S2, ..., Sn−1} and current trajectory Sn =
{l1, l2, ..., lt−1} where lt−1 is the most recent POI that u
has visited, the goal is to recommend the top-N preferable
POIs to user u at the next timestamp t.

4 The Proposed Model

In this section, we present our proposed model in detail. Fig-
ure 1 depicts the architecture of LSTPM. It mainly consists
of three modules including the long-term preference model-
ing, the short-term preference modeling, and the prediction
module. Our main contribution lies in the first two modules,
where we propose to model the long-term preferences us-
ing the nonlocal neural operation and model the short-term
preferences using geo-dilated LSTM in a unified way.

Long-Term Preference Modeling

When modeling long-term preferences, an intuitive idea is
to selectively gather the most useful information from the
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Figure 1: The architecture of our LSTPM model.

history based on the current situation. In this light, as shown
at the bottom of Figure 1, we design a two-layer nonlocal
network structure to learn the latent representation s+n of the
target user’s long-term preference. First, given a user u, we
encode the information of all POIs in each historical trajec-
tory Sh ∈ {S1, S2, ..., Sn−1} using a LSTM layer that main-
tains sequential dependencies:

ht = LSTM(xt, ht−1), t ∈ {1, 2, ..., |Sh|} (1)

where ht is the hidden state of LSTM, xt ∈ R
d×1 is

the d-dimensional embedding vector for the t-th POI lt ∈
Sh which is randomly initialized and will be trained in
the network. In this way, the POIs {l1, l2, ..., l|Sh|} in Sh

is encoded into {h1, h2, ..., h|Sh|}. Unlike the time-aware
POI recommendation approaches which consider temporal
cyclic effects, sequential POI recommendation (Liu et al.
2016; Manotumruksa, Macdonald, and Ounis 2018) focuses
mainly on exploiting the sequential patterns of user prefer-
ences/interests without considering the associated absolute
timestamps. However, the popularity of POIs is changing
over time in real-life scenarios. For example, people may
seek for restaurants during lunch hours and visit pubs at
night. Hence the overall representation sh for each trajec-
tory Sh should incorporate such information to capture the
time-sensitive property. To achieve this, we develop a time-
weighted operation. Specifically, we map one week into 48
time slots (24 slots for hours on weekdays and 24 slots for
hours on weekends). For each slot i, we construct a POI set
Hi =

{
l1, l2, ..., l|Hi|

}
where l ∈ L is a POI visited by at

least one user in time slot i. Then, we calculate the temporal
similarity τi,j between the i-th and j-th time slots as follows:

τi,j =
|Hi ∩Hj |
|Hi ∪Hj | . (2)

Intuitively, the more overlapping POIs two time slots have,
the higher their similarity will be. For a historical trajectory
Sh, according to the check-in time of each POI, we can de-

rive a sequence of check-in time slots for |Sh| POIs, repre-
sented by

{
p1, p2, ..., p|Sh|

}
, where p ∈ {1, 2, ..., 48}. With

the target user’s current time slot c, the trajectory-level rep-
resentation sh is generated by:

sh =

|Sh|∑
t=1

wtht, wt =
exp(τc,pt

)∑|Sh|
j=1 exp(τc,pj

)
, (3)

where τc,pj is the temporal similarity between the current
time slot c and the time slot of the j-th visited POI in Sh.

So far, we can represent the historical n−1 trajectories by
{s1, s2, ..., sn−1}. For trajectory Sn, it is worth noting that
we deploy a separate LSTM to explicitly model the recently
visited POIs, which will later serve the goal of short-term
preference modeling. Besides, for Sn, the time-weighted op-
eration is replaced by an average pooling:

sn =
1

|Sn|
|Sn|∑
t=1

ht, (4)

where the rationale is that, the freshly visited POIs in tra-
jectory Sn are more representative of users’ recent prefer-
ences, and the average pooling preserves the information of
all POIs in Sn, which can benefit both long- and short-term
preference modeling.

After learning the representations {s1, s2, ..., sn} for all
trajectories S = {S1, S2, ..., Sn}, to fulfill the goal of iden-
tifying relevant trajectories from the history to represent the
user’s long-term preferences, we derive the trajectory-based
long-term user preference s∗n ∈ R

d×1 with respect to the
current trajectory Sn using a nonlocal operation.

The basic idea of nonlocal networks is originated from
computer vision tasks (Wang et al. 2018). It aims to rep-
resent each position of the input signal (e.g., images or se-
quences) by a weighted sum of the features at all positions
to enable the modeling of nonlocal, long-range dependen-
cies. In our case, we tend to capture the influence of each
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historical trajectory Sh ∈ {S1, S2, ..., Sn−1} on the current
trajectory Sn based on the pairwise affinities. Formally, we
develop the following nonlocal operation to calculate s∗n:

s∗n =
1

C(S)

n−1∑
h

f(sn, sh)g(sh), (5)

where C(S) =
∑n−1

h f(sn, sh) is the normalization factor,
and g(·) generates the representation for sh. The pairwise
function f(·) calculates an affinity score between the current
trajectory Sn and the historical trajectory Sh. Specifically, in
our solution, f(sn, sh) and g(sh) are defined as:

f(sn, sh) = exp(s�n sh), (6)
g(sh) = Whsh, (7)

where sn and sh are the representations of the current and
historical trajectory Sn and Sh, respectively, while Wh is
a trainable projection weight matrix. We now reformulate
Eq.(5) as:

(8)
With the trajectory-based user preference s∗n, we fur-

ther derive the location-based long-term user preference
by taking the user’s most recently visited location into ac-
count. Intuitively, for next-POI recommendation, the target
user’s next move will be highly dependent on her/his cur-
rent geographic location, and a smart recommender should
recommend POIs in New York when a user has just up-
dated a check-in record in New York. So, we build a geo-
nonlocal structure to compute a fine-grained long-term pref-
erence s+n . To geographically measure the similarity be-
tween the current location lt−1 and historical trajectories
{S1, S2, ..., Sn−1}, we define a central coordinate for each
historical trajectory Sh ∈ {S1, S2, ..., Sn−1} via the average
pooling operation:

lonSh
=

lonl1 + lonl2 + ...+ lonl|Sh|

|Sh| , (9)

latSh
=

latl1 + latl2 + ...+ latl|Sh|

|Sh| , (10)

where latl and lonl are the longitude and latitude for POI l
in the trajectory. Similar to Eq.(8), to incorporate the spatial
impacts for long-term user preference modeling, we perform
the following geo-nonlocal operation by considering the dis-
tance between lt−1 and each historical trajectory:

s+n =
1∑n−1

h exp( 1
dn,h

s̃
�
n sh)

n−1∑
h

exp(
1

dn,h
s̃
�
n sh)Wh′sh,

(11)
where s̃n= s∗n + ht−1 is the aggregation of trajectory-based
long-term user preference and the hidden state of the most
current POI, and dn,h is the geographical distance between
the POI location lt−1 and the trajectory Sh, i.e., dn,h =√
(lonlt−1

− lonSh
)2 + (latlt−1

− latSh
)2. Clearly, the fi-

nal representation s+n combines temporal information from
all trajectories and spatial associations between each histori-
cal trajectory and the last check-in location. As a result, with
our dedicated nonlocal network structure, the learned long-
term user preference is a comprehensive spatiotemporal rep-
resentation.

Short-Term Preference Modeling

In POI recommendation, existing RNN-based methods treat
a user’s visited POI sequence as a straight pipeline without
considering any spatial relations among the POIs. Given a
temporal POI check-in sequence, RNNs can only learn tem-
poral dependencies that strictly follow the sequential order,
which is illustrated in Figure 2-(a). Though some RNN-
based approaches such as CARA (Manotumruksa, Macdon-
ald, and Ounis 2018) and TMCA (Li, Shen, and Zhu 2018)
take time or distance transition as additional information,
they can only model relationships among the inputs that are
consecutive and well-aligned. However, in real-life scenar-
ios, the visited POIs are often geographically scattered. Fol-
lowing the example in Section 1, within the POI check-in
sequence Sn = {l1, l2, l3, l4, l5}, l5 is geographically much
closer to l2 than l4, which means l2 is critical in determining
the next move from l4 to l5.

To alleviate such incontinuity of model inputs, dilated
RNNs (Chang et al. 2017) introduce a fixed skip length on
the inputs, e.g., {l1, l3, l5} for the skip length of 2. Formally,
the LSTM form of dilated RNN is defined as follows:

ht = LSTM(xt, ht−Δ), (12)

where Δ is the skip length. However, the skip length in
dilated RNNs is always predefined and fixed, thus making
it hard to generalize to POI recommendation tasks. Hence,
in what follows, we propose our geo-dilated LSTM scheme
that automatically determines the relevant inputs to be used
based on both geographical and temporal factors.

Figure 2-(b) presents the geo-dilated POI sequence based
on the original temporal sequence. Given Sn, we propose
Algorithm 1 to construct the input set Sgeo

n at time t − 1

Algorithm 1 Constructing the input set Sgeo
n at time t−1 for

geo-dilated LSTM

1: Input: the temporal POI sequence in the recent trajec-
tory Sn={l1, l2, ..., lt−1}

2: Output: the geo-dilated sequence set Sgeo
n

3: initialize with Sgeo
n = ∅, S′

n = ∅, and i = 2, where i
is an index for generating the dilated sequence;

4: compute the POI distance matrix D∈R
(t−1)×(t−1), with

entry dy,z=dz,y=
√

(lonly−lonlz )
2 +(latly−latlz )

2;
5: while i ≤ t− 1 do
6: set j = i− 1 and D′ = ∅;
7: while j ≥ 1 do
8: dli,lj �→ D′;
9: j −−;

10: end while
11: find dli,lk = min(D′);
12: {lk, li} �→ S′

n
13: i++;
14: end while
15: find the path from l1 to lt−1, denoted by

{{l1, lθ}, ..., {lδ, lt−1}}, where 1<θ<...<δ< t−1;
16: {{x1, xθ}, ..., {xδ, xt−1}} �→Sgeo

n , where each x ∈ R
d×1

is the embedding vector for the corresponding POI l;
17: end

217



��

��

��

��

��

�� �� �� �� ��

�� ���� ����

���������

	
��

��

��

��

��

��

�� �� �� ��

�� ���� ��

�����������

	
��

(a) the temporal POI sequence and the standard LSTM (b) the geo-dilated POI sequence and the geo-dilated LSTM

Figure 2: The comparison between the standard LSTM and the geo-dilated LSTM. In this demonstration, we use both the
standard LSTM and the geo-dilated LSTM to learn the representation of the last POI l5 from the temporal sequence and geo-
dilated sequence respectively.

for geo-dilated LSTM. In this case, l3 has two preceding
POIs in the temporal sequence: l1 and l2. Since the ge-
ographical distance between l1 and l3 is shorter than the
distance between l1 and l2, there exists a geo-dilated se-
quence {l1, l3}. Similarly, we construct a set of geo-dilated
sequences from the temporal sequence, denoted by S′

n. Af-
terwards, by finding the path from l1 to l5, we construct the
input set Sgeo

n ={{x1, x2}, {x2, x5}} with the POI embed-
ding vector x ∈ R

d×1. In short, Sgeo
n contains the two-step

paths from l1 to lt−1. In a mathematical form, the computa-
tion of geo-dilated LSTM involves the iteration of a two-step
LSTM:

h′
t−1 = LSTM(xt−1, h′

δ), (13)

where h′
t−1 is computed from the last sequence {xδ, xt−1} ∈

Sgeo
n . Intuitively, our geo-dilated LSTM first picks POIs

from the current trajectory as the input with different skip
lengths determined by the geographical relevance, and then
learns the short-term user preference via the dilated LSTM
scheme.

At time t − 1, with the latent representations ht−1 and
h′
t−1 respectively learned by the standard and geo-dilated

LSTMs, the final representation of the short-term user pref-
erence is an average of both vectors:

h+
t−1 =

ht−1 + h′
t−1

2
, (14)

where h+
t−1 fuses the temporal dependencies from ht−1 with

the spatial dependencies from h′
t−1.

Prediction

After obtaining the representations for both long- and short-
term user preferences, we compute the probability distribu-
tion p over the |L| POIs via the following:

p = softmax
(
Wp(s

+
n ⊕ h+

t−1)
)

(15)

where ⊕ is the concatenation of long- and short-term user
preferences, Wp ∈ R

|L|×2d is a trainable projection matrix
for all POIs. Consequently, the most likely POI that will be
visited by the target user at the next time step t is the one
with the largest probability. If we denote the probability of
ground truth POI as p ∈ p, then the objective function can

Table 1: Statistics of the evaluation datasets.

Datasets #user #POI #check-in #sessions sparsity
Foursquare 934 9,296 52,983 12,510 99.38%
Gowalla 5,802 40,868 301,080 75,733 99.87%

be formulated as the log likelihood:

L = −
N∑

k=1

log(pk) (16)

where N is the total number of training samples, pk repre-
sents the probability of the ground truth POI generated by
the model regarding the k-th training sample.

5 Experiments

In this section, we evaluate LSTPM by competing against
the state-of-the-art methods on two real-world datasets.

Evaluation Datasets

We conduct experiments on two widely-used real LSBN
datasets, namely Foursquare (Feng et al. 2018) and
Gowalla (Yin et al. 2015). The Foursquare check-in dataset
is collected from February 2010 to January 2011 in New
York while Gowalla contains world-wide check-ins from
February 2009 to October 2010. For both of them, we elim-
inate unpopular POIs that are visited by less than 10 users.
We treat users’ all check-ins in one day as a single trajectory
and remove trajectories having less than three check-ins. In-
active users with less than 5 trajectories are also filtered out.
According to (Feng et al. 2018), the first 80% of each users’
trajectories are used for training and the rest are for testing.
The statistics of both datasets after preprocessing are shown
in Table 1.

Baselines and Settings

We compare the performance of LSTPM with the following
eight peer methods:

LSTM: This is a variant of RNN model which has shown
effective in handling sequential data.

Time-LSTM: (Zhu et al. 2017) This is an extension of
LSTM which employs time gates to model the time intervals
between continuous inputs.
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Table 2: Performance comparison on two datasets w.r.t. Recall@K and NDCG@K.

Foursquare Gowalla

Rec@1 Rec@5 Rec@10 NDCG@1 NDCG@5 NDCG@10 Rec@1 Rec@5 Rec@10 NDCG@1 NDCG@5 NDCG@10
LSTM 0.1024 0.2115 0.2639 0.1024 0.1597 0.1768 0.0443 0.0971 0.1259 0.0443 0.0716 0.0809

ST-RNN 0.0884 0.2291 0.2968 0.0884 0.1615 0.1835 0.0505 0.1245 0.1687 0.0504 0.0885 0.1027
Time-LSTM 0.1307 0.2868 0.3667 0.1307 0.2117 0.2375 0.0639 0.1500 0.1963 0.0639 0.1082 0.1232

CARA 0.1112 0.3002 0.3902 0.1113 0.2093 0.2384 0.0627 0.1563 0.2090 0.0627 0.1112 0.1283
DRCF 0.1118 0.2743 0.3466 0.1118 0.1971 0.2206 0.0751 0.1709 0.2192 0.0751 0.1249 0.1406

DeepMove 0.1451 0.3110 0.3831 0.1451 0.2323 0.2556 0.0681 0.1330 0.1656 0.0681 0.1023 0.1128
TMCA 0.0953 0.2198 0.2722 0.0953 0.1601 0.1771 0.0499 0.1208 0.1588 0.0499 0.0865 0.0988
STGN 0.1118 0.2730 0.3547 0.1118 0.1951 0.2217 0.0745 0.1600 0.2041 0.0745 0.1191 0.1333

LSTPM 0.1561 0.3372 0.4091 0.1561 0.2515 0.2749 0.0984 0.2021 0.2510 0.0984 0.1523 0.1681

ST-RNN: (Liu et al. 2016) This is a RNN-based deep POI
recommendation model that incorporates spatial-temporal
transition matrices.

TMCA: (Li, Shen, and Zhu 2018) This method fuses mul-
tiple types of context including spatiotemporal transitions
and POI categories with two attention mechanisms. Note
that we remove the POI categorical context for fairness be-
cause no other methods make use of it.

CARA: (Manotumruksa, Macdonald, and Ounis 2018)
This method extends the GRU gates to respectively model
the ordinary and transition context for POI recommendation.

DCRF: (Manotumruksa, Macdonald, and Ounis. 2017)
This method aims to capture both users’ dynamic and static
preferences for POI recommendation. In our case, it can also
model long- and short-term preferences.

DeepMove: (Feng et al. 2018) This method learns user’s
long-term preference from the history with the attention
mechanism and learns short-term preference from the cur-
rent trajectory using a RNN module.

STGN: (Zhao et al. 2019) This method models temporal
and spatial contexts by adding time and distance gates to
integrate time and distance intervals.

Following (Feng et al. 2018), we set the dimension of em-
beddings and the hidden states to 500 for all deep learning-
based methods. All the parameters in our model are op-
timized using the gradient descent optimization algorithm
Adam with the batch size of 32 and the learning rate of
0.0001. Note that we do not compare our model with non-
deep learning methods. The reason is that it has been widely
proved that the baselines adopted in our experiments out-
perform the non-deep learning methods, e.g., DRCF (Man-
otumruksa, Macdonald, and Ounis. 2017) vs. the traditional
MF, and the BPR model (Rendle et al. 2009), and thus we
only show the improvements over these deep learning-based
baselines.

Evaluation Criteria

To evaluate the performance of each method for next-
POI recommendation, we adopt two evaluation metrics
that are commonly-applied in previous works (Li, Shen,
and Zhu 2018; Liu et al. 2016; Chen et al. 2019b):
Recall@K and Normalized Discounted Cumulative
Gain (NDCG@K). Recall@K measures the presence of
the correct POI among the top K recommended POIs, and

NDCG@K measures the quality top-K ranking list. In this
paper, we choose the popular K = {1, 5, 10} for evaluation.

Analysis on Recommendation Effectiveness

The results of different methods for next-POI recommenda-
tion are shown in Table 2. In each column, the best result
is highlighted in boldface and the second best is underlined.
From the statistics, we draw the following observations:
• Our proposed LSTPM consistently and significantly out-

performs all baselines in terms of every metric on
both Foursquare and Gowalla datasets. For example, on
Foursquare, compared with the second best method Deep-
Move, LSTPM improves the Recall@5 and NDCG@5
by 8.4% and 8.2% respectively. On Gowalla, our method
shows the advantage against others by an obvious margin,
where the overall improvement over the best competitor
DCRF achieves 22.7% on average. The quantitative eval-
uation clearly demonstrates the superior effectiveness of
our method.

• Among the baseline methods, DeepMove performs the
best on Foursquare dataset while DRCF is the best on
Gowalla dataset. As both approaches take the long- and
short-term preferences into consideration, it strongly il-
lustrates the importance of modeling long-term prefer-
ences from historical information apart from short-term
preference modeling. However, without the consideration
of transition contexts (e.g., time or distance), DRCF and
DeepMove can hardly maximize the recommendation ac-
curacy, and this is the key factor that LSTPM can outper-
form these two methods.

• Though showing promising results on Foursquare, the
performance of DeepMove on Gowalla drops greatly.
This is because DeepMove does not integrate distance in-
formation, but Gowalla contains world-wide POIs that are
highly sparse. This further verifies the importance of geo-
graphical distance for POI recommendation.

• ST-RNN, Time-LSTM, CARA, TMCA, STGN are better
than LSTM. This shows the advantage of modeling the
spatiotemporal relations among different POIs. In addi-
tion, TMCA performs worse than ST-RNN, Time-LSTM,
CARA, and STGN as it simply takes contextual informa-
tion as the input. In contrast, other methods integrate spa-
tial or temporal information into the RNN model, which
can result in the eventual performance improvement.
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Table 3: Performance of different LSTPM variants.

Foursquare Gowalla

Rec@1 Rec@5 Rec@10 NDCG@1 NDCG@5 NDCG@10 Rec@1 Rec@5 Rec@10 NDCG@1 NDCG@5 NDCG@10
best baseline 0.1451 0.3110 0.3902 0.1451 0.2323 0.2556 0.0751 0.1709 0.2192 0.0751 0.1249 0.1406
LSTPM-L 0.1191 0.3121 0.3912 0.1191 0.2203 0.2460 0.0755 0.1682 0.2100 0.0755 0.1243 0.1378
LSTPM-S 0.1116 0.2187 0.2642 0.1116 0.1673 0.1780 0.0716 0.1539 0.1941 0.0716 0.1145 0.1275
LSTPM 0.1561 0.3372 0.4091 0.1561 0.2515 0.2749 0.0984 0.2021 0.2510 0.0984 0.1523 0.1681

Analysis on Key Components in LSTPM

To verify the contribution of different components in
LSTPM to the performance gain, we further implement two
simplified versions of our model to conduct ablation tests:

• LSTPM-L: This version removes the short-term compo-
nent of LSTPM and only engages the long-term one.

• LSTPM-S: This version removes the long-term compo-
nent of LSTPM and only engages the short-term one.

The results of the degraded versions of LSTPM on two
datasets are shown in Table 3. Through the ablation tests,
we can observe that:

• LSTPM-L always performs better than LSTPM-S, and its
results on Gowalla are very close to the strongest base-
lines. The reason might be that LSTPM-L can better cap-
ture users’ long-term periodicity based on her/his current
state, which is critical for next-POI recommendation. This
clearly demonstrates the benefit of our modeling users’
long-term preferences.

• While LSTPM-S is less competitive than LSTPM-L, it
can still get better prediction performance than many
baselines such as LSTM and ST-RNN in Table 2. Remem-
ber that these methods also adopt LSTM structures. Hence
the effectiveness of LSTPM-S comes from our proposed
geo-dilated LSTM which captures geographical relations
among non-consecutive POIs.

• The complete model LSTPM, which is the combination of
LSTPM-L and LSTPM-S, achieves the best performance
on both datasets, showing that both long-term and short-
term preferences has positive impacts on the user’s choice
to the next POI.

Analysis on Impact of History Length

One key contribution of our LSTPM model is that it takes
historical information into account to mine the long-term
preferences. We investigate the impact of different history
lengths on modeling long-term preferences. We split the
users’ trajectories into 7 groups based on their numbers of
historical trajectories. The first group contains users hav-
ing 4 or less historical trajectories, while users having 10 or
more ones are in the last group. We then evaluate the perfor-
mance separately regarding each group as the model input.
The results are shown in Figure 3.

Fig. 3 shows an overall upward trend of model perfor-
mance on two datasets with the growing history length, as
it takes time to reveal people’s periodical regularities. The
longer the history length is, the more information can be ex-
tracted by our long-term preference modeling component.

Figure 3: The impact of history length.

Analysis on Effectiveness of Geo-Dilated LSTM

Another contribution of our LSTPM model lies in the geo-
dilated LSTM which is used to capture the relations between
non-consecutive POIs in the current session. In this section,
we examine the effectiveness of geo-dilated LSTM and the
LSTM on modeling the short-term preference. Note that to
exclude the influence of the long-term component, we con-
duct this experiment on the short-term component, i.e., we
implement two variants of LSTPM-S. One uses the LSTM
structure, and the other adopts the combination of LSTM
and Geo-Dilated LSTM. The results are shown in Figure 4.

Figure 4: The effectiveness of geo-dilated LSTM.

From Fig. 4, it is clear that our “LSTM+Geo-Dilated”
structure yields better performance than the single LSTM on
both datasets. This verifies the importance of modeling users
activities in visiting non-consecutive POIs. Another interest-
ing finding would be that the superiority of “LSTM+Geo-
Dilated” is more significant on Gowalla than Foursquare.
Such a phenomenon might be attributed to the property of
the dataset. The users in Foursquare exhibits local behav-
iors whereas those in Gowalla usually have global range. In
the global setting, our geo-dilated LSTM can assign higher
weights on closer POIs, rather than on consecutive ones used
in LSTM. It makes sense when a user lives in New York and
has a business trip to Chicago and then back to Yew York.
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In this case, the geographical relation play more important
role than the temporal visiting order. It therefore links to the
positive effect of our proposed geo-dilated LSTM structure.

6 Conclusion

In this paper, we propose a novel model, namely LSTPM
for next-POI recommendation. Specifically, we develop a
context-aware non-local network to model long-term pref-
erences and a geo-dilated LSTM to model short-term pref-
erences. The experimental results demonstrate that our pro-
posed approach substantially improves the recommendation
accuracy compared with the state-of-the-art methods. No-
tably, while our proposed method outperforms all baselines,
we are aware of the common problem in POI recommenda-
tion, i.e., the low recall and NDCG scores. This is reasonable
due to the high data sparsity. In the future, we plan to address
this issue by introducing user/POI side information.
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